Math and Art: Collaborative Practices

A. Bocanegra¹ W. Kronholm²

¹Visual Studies SCI-Arc

²Department of Mathematics Whittier College

Joint Mathematics Meetings, 2012

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Bocanegra, Kronholm Math and Art: Collaborative Practices

<ロト <回 > < 注 > < 注 > 、

æ

Motivating Axiom

Definition

Interdisciplinary collaboration is the practice of multiple individuals from multiple disciplines engaging in creative acts which mutually benefit and enrich each discipline.

Axiom

It is possible, meaningful, and desirable for artists and mathematicians to engage in interdisciplinary collaboration.

ヘロア ヘビア ヘビア・

Motivating Axiom

Definition

Interdisciplinary collaboration is the practice of multiple individuals from multiple disciplines engaging in creative acts which mutually benefit and enrich each discipline.

Axiom

It is possible, meaningful, and desirable for artists and mathematicians to engage in interdisciplinary collaboration.

ヘロト 人間 ト ヘヨト ヘヨト

What Collaboration Looks Like

Collaboration between mathematicians and artists will

- Actively engage mathematicians and artists in a project
- Contribute to the field of Art
- Contribute to the field of Mathematics
- Inspire new directions in Art
- Inspire new directions in Mathematics

・ 同 ト ・ ヨ ト ・ ヨ ト …

What Collaboration Looks Like

Collaboration between mathematicians and artists will

- Actively engage mathematicians and artists in a project
- Contribute to the field of Art
- Contribute to the field of Mathematics
- Inspire new directions in Art
- Inspire new directions in Mathematics

・ 同 ト ・ ヨ ト ・ ヨ ト …

What Collaboration Looks Like

Collaboration between mathematicians and artists will

- Actively engage mathematicians and artists in a project
- Contribute to the field of Art
- Contribute to the field of Mathematics
- Inspire new directions in Art
- Inspire new directions in Mathematics

・ 同 ト ・ ヨ ト ・ ヨ ト …

What Collaboration Looks Like

Collaboration between mathematicians and artists will

- Actively engage mathematicians and artists in a project
- Contribute to the field of Art
- Contribute to the field of Mathematics
- Inspire new directions in Art
- Inspire new directions in Mathematics

・ 同 ト ・ ヨ ト ・ ヨ ト …

What Collaboration Looks Like

Collaboration between mathematicians and artists will

- Actively engage mathematicians and artists in a project
- Contribute to the field of Art
- Contribute to the field of Mathematics
- Inspire new directions in Art
- Inspire new directions in Mathematics

・ 同 ト ・ ヨ ト ・ ヨ ト …

What Collaboration Looks Like

Collaboration between mathematicians and artists will

- Actively engage mathematicians and artists in a project
- Contribute to the field of Art
- Contribute to the field of Mathematics
- Inspire new directions in Art
- Inspire new directions in Mathematics

・ 同 ト ・ ヨ ト ・ ヨ ト …

Previous Work

• H. S. M. Coxeter & John Robinson

• Robinson, "Intuition" 1992

Bocanegra, Kronholm Math and Art: Collaborative Practices

イロト 不得 とくほと くほとう

∃ 900

Previous Work

• H. S. M. Coxeter & John Robinson

• Robinson, "Intuition" 1992

・ロト ・ 理 ト ・ ヨ ト ・

∃ 900

Bocanegra, Kronholm Math and Art: Collaborative Practices

Bocanegra, Kronholm Math and Art: Collaborative Practices

Previous Work

H. S. M. Coxeter & John Robinson

- Robinson, "Intuition" (1992)
- Coxeter, "Symmetrical combinations of three or four hollow triangles" (1994)

$$PQ = DE$$

•
$$\frac{AB}{PO} = 2 \Rightarrow$$
 triangles collapse

• $\frac{\overrightarrow{AB}}{\overrightarrow{PQ}} = \frac{1}{3}(2\sqrt{6}+1) \approx 1.9663265 \Rightarrow \text{structure is rigid}$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Previous Work

- H. S. M. Coxeter & John Robinson
 - Robinson, "Intuition" (1992)
 - Coxeter, "Symmetrical combinations of three or four hollow triangles" (1994)

•
$$PQ = DE$$

• $\frac{AB}{PQ} = 2 \Rightarrow$ triangles collapse
• $\frac{AB}{PQ} = \frac{1}{3}(2\sqrt{6} + 1) \approx 1.9663265 \Rightarrow$ structure is rigid

ヘロト ヘアト ヘビト ヘビト

Previous Work

- H. S. M. Coxeter & John Robinson
 - Robinson, "Intuition" (1992)
 - Coxeter, "Symmetrical combinations of three or four hollow triangles" (1994)

•
$$PQ = DE$$

• $\frac{AB}{PQ} = 2 \Rightarrow$ triangles collapse
• $\frac{AB}{PQ} = \frac{1}{3}(2\sqrt{6} + 1) \approx 1.9663265 \Rightarrow$ structure is rigid

ヘロト ヘアト ヘビト ヘビト

Previous Work

- H. S. M. Coxeter & John Robinson
 - Robinson, "Intuition" (1992)
 - Coxeter, "Symmetrical combinations of three or four hollow triangles" (1994)

•
$$PQ = DE$$

• $\frac{AB}{PQ} = 2 \Rightarrow$ triangles collapse
• $\frac{AB}{PQ} = \frac{1}{3}(2\sqrt{6} + 1) \approx 1.9663265 \Rightarrow$ structure is rigid

ヘロト ヘアト ヘビト ヘビト

Previous Work

- H. S. M. Coxeter & John Robinson
 - Robinson, "Intuition" (1992)
 - Coxeter, "Symmetrical combinations of three or four hollow triangles" (1994)

•
$$PQ = DE$$

• $\frac{AB}{PQ} = 2 \Rightarrow$ triangles collapse
• $\frac{AB}{PQ} = \frac{1}{3}(2\sqrt{6} + 1) \approx 1.9663265 \Rightarrow$ structure is rigid

ヘロト ヘアト ヘビト ヘビト

Bocanegra, Kronholm Math and Art: Collaborative Practices

Anaylsis of Collaboration

Artist uses own intuition to create art object

- Mathematician inspired to create mathematical model of the object and analyze it
- Communication goes "one way"
 - Art informs mathematics
 - Mathematics informs art
 - "I must confess that I don't understand the mathematics of your essay, but I do get immense satisfaction in looking at the equations and knowing that they relate directly to something that has 'popped' into my brain" - Robinson

• Math object largely illustrative of art object.

ヘロト ヘワト ヘビト ヘビト

Anaylsis of Collaboration

- Artist uses own intuition to create art object
- Mathematician inspired to create mathematical model of the object and analyze it
- Communication goes "one way"
 - Art informs mathematics
 - Mathematics informs art
 - "I must confess that I don't understand the mathematics of your essay, but I do get immense satisfaction in looking at the equations and knowing that they relate directly to something that has 'popped' into my brain" - Robinson

• Math object largely illustrative of art object.

・ロ と ・ 「 日 と ・ 「 日 と ・ 「 日 と ・ 」

Anaylsis of Collaboration

- Artist uses own intuition to create art object
- Mathematician inspired to create mathematical model of the object and analyze it
- Communication goes "one way"
 - Art informs mathematics
 - Mathematics informs art
 - "I must confess that I don't understand the mathematics of your essay, but I do get immense satisfaction in looking at the equations and knowing that they relate directly to something that has 'popped' into my brain" - Robinson

• Math object largely illustrative of art object.

くロト (過) (目) (日)

Anaylsis of Collaboration

- Artist uses own intuition to create art object
- Mathematician inspired to create mathematical model of the object and analyze it
- Communication goes "one way"
 - Art informs mathematics
 - Mathematics informs art
 - "I must confess that I don't understand the mathematics of your essay, but I do get immense satisfaction in looking at the equations and knowing that they relate directly to something that has 'popped' into my brain" - Robinson

• Math object largely illustrative of art object.

くロト (過) (目) (日)

Anaylsis of Collaboration

- Artist uses own intuition to create art object
- Mathematician inspired to create mathematical model of the object and analyze it
- Communication goes "one way"
 - Art informs mathematics
 - Mathematics informs art
 - "I must confess that I don't understand the mathematics of your essay, but I do get immense satisfaction in looking at the equations and knowing that they relate directly to something that has 'popped' into my brain" - Robinson

• Math object largely illustrative of art object.

くロト (過) (目) (日)

Anaylsis of Collaboration

- Artist uses own intuition to create art object
- Mathematician inspired to create mathematical model of the object and analyze it
- Communication goes "one way"
 - Art informs mathematics
 - Mathematics informs art
 - "I must confess that I don't understand the mathematics of your essay, but I do get immense satisfaction in looking at the equations and knowing that they relate directly to something that has 'popped' into my brain" - Robinson

• Math object largely illustrative of art object.

ヘロト 人間 ト ヘヨト ヘヨト

Anaylsis of Collaboration

- Artist uses own intuition to create art object
- Mathematician inspired to create mathematical model of the object and analyze it
- Communication goes "one way"
 - Art informs mathematics
 - Mathematics informs art
 - "I must confess that I don't understand the mathematics of your essay, but I do get immense satisfaction in looking at the equations and knowing that they relate directly to something that has 'popped' into my brain" - Robinson
- Math object largely illustrative of art object.

く 同 と く ヨ と く ヨ と

Further Collaboration

• Coxeter communicates to Robinson:

Theorem (Soddy 1936)

There exists a sequence of spheres in \mathbb{R}^3 in which any five consecutive spheres are all mutually tangent. The radii of the spheres progress geometrically in proportion equal to the root of $x^5 - x^4 - x^3 - x^2 + x + 1 = 0$ which is between 1 and 2.

• Robinson's response: "Firmament" (1996)

ヘロン ヘアン ヘビン ヘビン

Further Collaboration

Coxeter communicates to Robinson:

Theorem (Soddy 1936)

There exists a sequence of spheres in \mathbb{R}^3 in which any five consecutive spheres are all mutually tangent. The radii of the spheres progress geometrically in proportion equal to the root of $x^5 - x^4 - x^3 - x^2 + x + 1 = 0$ which is between 1 and 2.

Robinson's response: "Firmament" (1996)

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Further Collaboration

Coxeter communicates to Robinson:

Theorem (Soddy 1936)

There exists a sequence of spheres in \mathbb{R}^3 in which any five consecutive spheres are all mutually tangent. The radii of the spheres progress geometrically in proportion equal to the root of $x^5 - x^4 - x^3 - x^2 + x + 1 = 0$ which is between 1 and 2.

• Robinson's response: "Firmament" (1996)

Bocanegra, Kronholm

Math and Art: Collaborative Practices

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → のへ⊙

Analysis of Collaboration

Communication goes "one way"

- Mathematics informs art
- Art informs mathematics

• Art object is largely illustrative of math object.

ヘロト ヘアト ヘビト ヘビト

Analysis of Collaboration

Communication goes "one way"

- Mathematics informs art
- Art informs mathematics

• Art object is largely illustrative of math object.

ヘロト ヘアト ヘビト ヘビト

Analysis of Collaboration

Communication goes "one way"

- Mathematics informs art
- Art informs mathematics

• Art object is largely illustrative of math object.

ヘロト ヘアト ヘビト ヘビト

Analysis of Collaboration

Communication goes "one way"

- Mathematics informs art
- Art informs mathematics
- Art object is largely illustrative of math object.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Homology Project

- Use results from R. Ghrist, V. de Silva, etc., and build on these
- Basic algebraic topology (homology of simplicial complexes, some geometry)
- Coverage of sensor networks
- Locations of holes in network
- Create an interactive immersive environment
- "Record" each performance in the creation of a 3D printed object
- OpenSource project

・ 同 ト ・ ヨ ト ・ ヨ ト

Homology Project

- Use results from R. Ghrist, V. de Silva, etc., and build on these
- Basic algebraic topology (homology of simplicial complexes, some geometry)
- Coverage of sensor networks
- Locations of holes in network
- Create an interactive immersive environment
- "Record" each performance in the creation of a 3D printed object
- OpenSource project

▲■ ▶ ▲ 国 ▶ ▲ 国 ▶

Homology Project

- Use results from R. Ghrist, V. de Silva, etc., and build on these
- Basic algebraic topology (homology of simplicial complexes, some geometry)
- Coverage of sensor networks
- Locations of holes in network
- Create an interactive immersive environment
- "Record" each performance in the creation of a 3D printed object
- OpenSource project

▲□ → ▲ □ → ▲ □ →

Homology Project

- Use results from R. Ghrist, V. de Silva, etc., and build on these
- Basic algebraic topology (homology of simplicial complexes, some geometry)
- Coverage of sensor networks
- Locations of holes in network
- Create an interactive immersive environment
- "Record" each performance in the creation of a 3D printed object
- OpenSource project

・ 通 ト ・ ヨ ト ・ ヨ ト

Homology Project

- Use results from R. Ghrist, V. de Silva, etc., and build on these
- Basic algebraic topology (homology of simplicial complexes, some geometry)
- Coverage of sensor networks
- Locations of holes in network
- Create an interactive immersive environment
- "Record" each performance in the creation of a 3D printed object
- OpenSource project

く 同 と く ヨ と く ヨ と

Homology Project

- Use results from R. Ghrist, V. de Silva, etc., and build on these
- Basic algebraic topology (homology of simplicial complexes, some geometry)
- Coverage of sensor networks
- Locations of holes in network
- Create an interactive immersive environment
- "Record" each performance in the creation of a 3D printed object
- OpenSource project

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Homology Project

- Use results from R. Ghrist, V. de Silva, etc., and build on these
- Basic algebraic topology (homology of simplicial complexes, some geometry)
- Coverage of sensor networks
- Locations of holes in network
- Create an interactive immersive environment
- "Record" each performance in the creation of a 3D printed object
- OpenSource project

・ 同 ト ・ ヨ ト ・ ヨ ト …

Custom Hardware

• Short range RF TX/RX

- Custom designed circuits based on Arduino
- Homological computations done in Sage
- 3D printing on MakerBot Thing-O-Matic

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Custom Hardware

- Short range RF TX/RX
- Custom designed circuits based on Arduino
- Homological computations done in Sage
- 3D printing on MakerBot Thing-O-Matic

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Custom Hardware

- Short range RF TX/RX
- Custom designed circuits based on Arduino
- Homological computations done in Sage
- 3D printing on MakerBot Thing-O-Matic

・ 同 ト ・ ヨ ト ・ ヨ ト …

Custom Hardware

- Short range RF TX/RX
- Custom designed circuits based on Arduino
- Homological computations done in Sage
- 3D printing on MakerBot Thing-O-Matic

INTD 235 Math/Art: Collaborative Practices

- Class of 13 students, various academic disciplines (10 majors represented)
- Three self-organized groups (5, 5, 3)
- Build arduino sensors from components on custom printed PC boards
- Utilize ideas from Applied Algebraic Topology
- Design and build immersive interactive environments using the sensor network as a medium

ヘロン 人間 とくほ とくほ とう

INTD 235 Math/Art: Collaborative Practices

- Class of 13 students, various academic disciplines (10 majors represented)
- Three self-organized groups (5, 5, 3)
- Build arduino sensors from components on custom printed PC boards
- Utilize ideas from Applied Algebraic Topology
- Design and build immersive interactive environments using the sensor network as a medium

ヘロン 人間 とくほ とくほ とう

INTD 235 Math/Art: Collaborative Practices

- Class of 13 students, various academic disciplines (10 majors represented)
- Three self-organized groups (5, 5, 3)
- Build arduino sensors from components on custom printed PC boards
- Utilize ideas from Applied Algebraic Topology
- Design and build immersive interactive environments using the sensor network as a medium

(1) マン・ション (1) マン・

INTD 235 Math/Art: Collaborative Practices

- Class of 13 students, various academic disciplines (10 majors represented)
- Three self-organized groups (5, 5, 3)
- Build arduino sensors from components on custom printed PC boards
- Utilize ideas from Applied Algebraic Topology
- Design and build immersive interactive environments using the sensor network as a medium

(日本) (日本) (日本)

INTD 235 Math/Art: Collaborative Practices

- Class of 13 students, various academic disciplines (10 majors represented)
- Three self-organized groups (5, 5, 3)
- Build arduino sensors from components on custom printed PC boards
- Utilize ideas from Applied Algebraic Topology
- Design and build immersive interactive environments using the sensor network as a medium

・ 同 ト ・ ヨ ト ・ ヨ ト …

Student Projects

Bocanegra, Kronholm Math and Art: Collaborative Practices

문 🕨 👘 🖻

Student Projects

Bocanegra, Kronholm Math and Art: Collaborative Practices

Student Projects

Bocanegra, Kronholm Math and Art: Collaborative Practices

• Sensor network is a new medium for building art projects

- Open source, therefore customizable by other artists
- Allows for hands-on exploration of mathematical objects
 - Unit disc graphs of points in \mathbb{R}^2 and \mathbb{R}^3
 - Rips complexes
 - Configurations of points in \mathbb{R}^2 and \mathbb{R}^3
- Interesting mathematical questions
 - What is the "best" way to represent the performance as a 3D object?
 - Should preserve node-node communications
 - Should preserve topology of the network
 - What other topological information can be determined about the network based on communication data?

ヘロン ヘアン ヘビン ヘビン

Sensor network is a new medium for building art projects

- Open source, therefore customizable by other artists
- Allows for hands-on exploration of mathematical objects
 - Unit disc graphs of points in \mathbb{R}^2 and \mathbb{R}^3
 - Rips complexes
 - Configurations of points in \mathbb{R}^2 and \mathbb{R}^3
- Interesting mathematical questions
 - What is the "best" way to represent the performance as a 3D object?
 - Should preserve node-node communications
 - Should preserve topology of the network
 - What other topological information can be determined about the network based on communication data?

ヘロン ヘアン ヘビン ヘビン

• Sensor network is a new medium for building art projects

• Open source, therefore customizable by other artists

Allows for hands-on exploration of mathematical objects

- Unit disc graphs of points in \mathbb{R}^2 and \mathbb{R}^3
- Rips complexes
- Configurations of points in \mathbb{R}^2 and \mathbb{R}^3
- Interesting mathematical questions
 - What is the "best" way to represent the performance as a 3D object?
 - Should preserve node-node communications
 - Should preserve topology of the network
 - What other topological information can be determined about the network based on communication data?

- Sensor network is a new medium for building art projects
 - Open source, therefore customizable by other artists
- Allows for hands-on exploration of mathematical objects
 - $\bullet\,$ Unit disc graphs of points in \mathbb{R}^2 and \mathbb{R}^3
 - Rips complexes
 - Configurations of points in \mathbb{R}^2 and \mathbb{R}^3
- Interesting mathematical questions
 - What is the "best" way to represent the performance as a 3D object?
 - Should preserve node-node communications
 - Should preserve topology of the network
 - What other topological information can be determined about the network based on communication data?

- Sensor network is a new medium for building art projects
 - Open source, therefore customizable by other artists
- Allows for hands-on exploration of mathematical objects
 - $\bullet~$ Unit disc graphs of points in \mathbb{R}^2 and \mathbb{R}^3
 - Rips complexes
 - Configurations of points in \mathbb{R}^2 and \mathbb{R}^3
- Interesting mathematical questions
 - What is the "best" way to represent the performance as a 3D object?
 - Should preserve node-node communications
 - Should preserve topology of the network
 - What other topological information can be determined about the network based on communication data?

- Sensor network is a new medium for building art projects
 - Open source, therefore customizable by other artists
- Allows for hands-on exploration of mathematical objects
 - $\bullet~$ Unit disc graphs of points in \mathbb{R}^2 and \mathbb{R}^3
 - Rips complexes
 - Configurations of points in \mathbb{R}^2 and \mathbb{R}^3
- Interesting mathematical questions
 - What is the "best" way to represent the performance as a 3D object?
 - Should preserve node-node communications
 - Should preserve topology of the network
 - What other topological information can be determined about the network based on communication data?

- Sensor network is a new medium for building art projects
 - Open source, therefore customizable by other artists
- Allows for hands-on exploration of mathematical objects
 - $\bullet~$ Unit disc graphs of points in \mathbb{R}^2 and \mathbb{R}^3
 - Rips complexes
 - Configurations of points in \mathbb{R}^2 and \mathbb{R}^3
- Interesting mathematical questions
 - What is the "best" way to represent the performance as a 3D object?
 - Should preserve node-node communications
 - Should preserve topology of the network
 - What other topological information can be determined about the network based on communication data?

- Sensor network is a new medium for building art projects
 - Open source, therefore customizable by other artists
- Allows for hands-on exploration of mathematical objects
 - $\bullet~$ Unit disc graphs of points in \mathbb{R}^2 and \mathbb{R}^3
 - Rips complexes
 - Configurations of points in \mathbb{R}^2 and \mathbb{R}^3
- Interesting mathematical questions
 - What is the "best" way to represent the performance as a 3D object?
 - Should preserve node-node communications
 - Should preserve topology of the network
 - What other topological information can be determined about the network based on communication data?

- Sensor network is a new medium for building art projects
 - Open source, therefore customizable by other artists
- Allows for hands-on exploration of mathematical objects
 - $\bullet\,$ Unit disc graphs of points in \mathbb{R}^2 and \mathbb{R}^3
 - Rips complexes
 - Configurations of points in \mathbb{R}^2 and \mathbb{R}^3
- Interesting mathematical questions
 - What is the "best" way to represent the performance as a 3D object?
 - Should preserve node-node communications
 - Should preserve topology of the network
 - What other topological information can be determined about the network based on communication data?

- Sensor network is a new medium for building art projects
 - Open source, therefore customizable by other artists
- Allows for hands-on exploration of mathematical objects
 - $\bullet\,$ Unit disc graphs of points in \mathbb{R}^2 and \mathbb{R}^3
 - Rips complexes
 - Configurations of points in \mathbb{R}^2 and \mathbb{R}^3
- Interesting mathematical questions
 - What is the "best" way to represent the performance as a 3D object?
 - Should preserve node-node communications
 - Should preserve topology of the network
 - What other topological information can be determined about the network based on communication data?

- Sensor network is a new medium for building art projects
 - Open source, therefore customizable by other artists
- Allows for hands-on exploration of mathematical objects
 - $\bullet\,$ Unit disc graphs of points in \mathbb{R}^2 and \mathbb{R}^3
 - Rips complexes
 - Configurations of points in \mathbb{R}^2 and \mathbb{R}^3
- Interesting mathematical questions
 - What is the "best" way to represent the performance as a 3D object?
 - Should preserve node-node communications
 - Should preserve topology of the network
 - What other topological information can be determined about the network based on communication data?

ヘロン 人間 とくほ とくほ とう

Abbreviated Bibliography

- D. Schattschneider, "Coxeter and the Artists: Two-way Inspiration" (2006)
- V. de Silva and R. Ghrist, "Coordinate-free coverage in sensor networks with controlled boundaries via homology" (2006)
- http://www.popmath.org.uk/sculpture/pages/2intuiti.html
- http://www.popmath.org.uk/sculpture/pages/5firm.html
- http://www.sagemath.org
- http://www.arduino.cc
- http://www.makerbot.com

・ 同 ト ・ ヨ ト ・ ヨ ト …